
4-page Case Study. Published on: 

http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006833 

 
Rate This Evidence:  

 
 

Composite C1 Content Management Solution Uses 
Parallelization to Deliver Huge Performance Gains  

Content management system vendor Composite needed to parallelize its 
software to realize the performance gains enabled by today’s multicore 
processors. Composite took advantage of the new parallel -programming tools 
provided in the Microsoft Visual Studio 2010 development system and the .NET 
Framework 4 to parallelize its code. The company’s efforts have yielded 
impressive performance gains: An eight-core server is delivering a 60 percent 
reduction in page-rendering times and an 80 percent reduction in the 
compilation of dynamic types upon system initialization. What’s more, by using 
the latest Microsoft aids for parallel programming, Composite was able to 
implement parallelism in its solution quickly and cost -effectively, with very little 
developer effort.  

Situation  

Microsoft Gold Certified Partner Composite develops and sells Composite C1, a content 
management system (CMS) designed to help companies build Web sites that combine 
solid marketing infrastructure, innovative design, and strong usability. Originally founded 
as a Web development shop, Composite decided to build its second-generation CMS in 
2005 after realizing that the Microsoft  

 

  
 With Visual Studio 
2010 and the .NET 
Framework 4, 
Microsoft is 
providing tools that 
immensely simplify 
parallel 
development. 
Developers can 
simply „declare 
intent‟ to do 
parallelization and 
leave it to the 
underlying 
framework to 

 

http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006833
http://www.composite.net/C1.aspx


Visual Studio 2005 development system and the Microsoft .NET 
Framework 2.0 presented an opportunity to build a solution that 
could meet the needs of both Web developers and designers.  

As new versions of Visual Studio and the .NET Framework 
become available, Composite examines them closely to 
determine how they can be applied to improve its own product. 

For example, the company took advantage of Visual Studio 2008 and the .NET Framework 
3.5 to add support for Language-Integrated Query (LINQ) in version 1.2 of Composite C1. 
Composite began this exercise again in 2009, when it joined an early adopter pro-gram for 
Visual Studio 2010 and the .NET Framework 4 and began planning for the development of 
Composite C1 version 1.3. 

One area on which Composite decided to focus was performance—specifically, how to 
optimize its software to get the most out of modern, multicore processors and 
multiprocessor servers. “For the past few decades, we‟ve all benefited from rapidly 
increasing processor clock speeds,” says Marcus Wendt, Cofounder and Product Manager 
at Composite. “However, this extended „free lunch‟ is over, in that clock speeds have 
leveled off and chip manu-facturers are turning to multiple-processor cores for further 
gains in processing power. Therein lies the challenge, in that most applications today—
Composite C1 version 1.2 included—are not multicore optimized, which can result in one 
core running at 100 percent while the rest remain idle. To get the best performance out of 
today‟s multicore processors, we needed to introduce parallelization into our code.” 

Solution  

Composite took advantage of the new parallel-programming tools provided in the Microsoft 
Visual Studio 2010 development system and the .NET Framework 4, and the company‟s 
efforts have yielded significant performance gains in multiple areas. “Parallel programming 
has traditionally been difficult, tedious, and hard to debug, with very limited tool support,” 
says Wendt. “The System.Threading namespace in the .NET Framework has existed for 
years, but in the past it required a lot of „plumbing code‟ to use effectively. Visual Studio 
2010 and the .NET Framework 4 eliminate a lot of complexity to make parallel 
programming much easier.” 

New Parallel-Programming Aids 
Composite parallelized its code by using Visual Studio 2010 and the new parallelization 
libraries in the .NET Framework 4, including: 

 Task Parallel Library (TPL), which includes parallel implementations of for and 
foreach loops (For and For Each in the Visual Basic language), as well as rich 
support for coordinating the asyn-chronous execution of individual tasks. 
Implemented as a set of public types and APIs in the System.Threading.Tasks 
namespace, TPL relies on an extensible task-scheduling system that is integrated 
with the .NET ThreadPool and scales the degree of concurrency dynamically, so 
that all available processors and process¬ing cores are used most efficiently.  

 Parallel Language-Integrated Query (PLINQ), a parallel implementation of LINQ 
to Objects that combines the simplicity and readability of LINQ syntax with the 

handle the rest. 

 

Marcus Wendt 
Cofounder and 
Product Manager, 
Composite 

 

 
 

 
 



power of parallel programming. PLINQ implements the full set of LINQ standard 
query operators as extension methods in the System.Linq namespace, along with 
additional operators to control the execution of parallel opera-tions. As with code 
that targets the Task Parallel Library on top of which PLINQ is built, PLINQ queries 
scale in the degree of concurrency according to the capabilities of the host 
computer.  

 New Data Structures for Parallel Programming, which include concurrent 
collection classes that are scalable and thread safe; lightweight synchronization 
primitives; and types for lazy initialization and producer/consumer scenarios. 
Developers can use these new types with any multithreaded application code, 
including that which uses the Task Parallel Library and PLINQ. 

Composite also took 
advantage of the new 
Parallel Stacks and Parallel 
Tasks windows for 
debugging code, which are 
provided in Visual Studio 
2010 Ultimate, Premium, 
and Professional. Visual 
Studio 2010 Premium and 
Ultimate also have a new 
Concurrency Visualizer, 
which is integrated with the 
profiler to provide graphical, 
tabular, and numerical data 
about how multithreaded 
applications interact with 
themselves and with other 
programs. “The Concurrency 
Visualizer and other parallel-
programming tools in Visual 
Studio 2010 are a great help 
in that they enable 

developers to quickly identify areas of concern and navigate through call stacks and to 
relevant call sites in the source code,” says Martin Ingvar Jensen, Senior Developer at 
Composite.  

Faster Compilation of Dynamic Types 
In parallelizing its code, Composite identified two areas that were prime candidates for 
concurrency. One area was the compilation of dynamic types, which is done upon 
reinitializing Composite C1 and can take up to 90 seconds for large Web sites. “Our 
dynamic type system enables developers to  

 

 

 

 

  
 Parallel 
programming has 

 



design data types using our Web interface and treat them as 
„real‟ .NET Framework types, such as executing LINQ statements 
against them,” says Wendt. “This is achieved by generating and 
compiling code upon initialization, which is time-consuming and 
processor intensive. Without parallelization, the CPU Usage 
History indicator would show one core running at 100 percent 
utilization while the other cores were doing no work at all.”  

Parallelization was achieved by changing a classic foreach loop 
in the application‟s compilation manager to a Parallel.ForEach 
loop—a task that required changing three lines of code. The 
performance gains achieved through this effort are shown in 
Figure 1. “The time that Composite C1 spends compiling 
dynamic types has been significantly reduced on multicore 
systems, with performance increasing steadily as more cores are 
available,” says Wendt. “Not only does this reduce startup times 
upon initial deployment, but it also makes developers more 
efficient and productive when they‟re working with our software. 

“Given the very limited amount of code work we had to do, it‟s fair to say that the support 
for parallel programming provided in the .NET Framework 4 worked very well for us,” says 
Wendt. 
  

Improved Page-Rendering Performance 
Composite also saw the potential for big performance gains in page rendering. “In 
Composite C1, the rendering process handles the construction of page elements such as 
navigation aids, news listings, search results, and so on,” explains Wendt. “In the past, 
these dynamic page elements were rendered serially, one after the other. Web pages 
often contain multiple renderings, so the ability to perform those operations in parallel 
provides a huge opportunity to improve performance—and thus deliver a better end-user 
experience.” 

The company parallelized the rendering process by using the new data structures for 
parallel programming. A code sample is shown in Figure 2; Figure 3 shows the 
performance gains. “Rather than using a C# statement such as foreach to declare that 
concurrency is desired, we call the static ForEach method on the parallel class, passing a 
collection of data and a lambda expression you want to execute,” explains Wendt. “The 
.NET Framework 4 handles all of the complex thread management in accordance with the 
underlying hardware platform, firing off more threads as more cores are available. This is 
work that most developers will happily let the underlying programming framework handle—
in a way that‟s likely more efficient and optimized than what they could implement by 
hand.” 

traditionally been 
difficult, tedious, 
and hard to debug, 
with very limited 
tool support.… 
Visual Studio 2010 
and the .NET 
Framework 4 
eliminate a lot of 
complexity to make 
parallel 
programming 
much easier. 

 

Marcus Wendt 
Cofounder and 
Product Manager, 
Composite 

 

 
 

 
 



Composite‟s use of 
ConcurrentQueue<T> 
instead of List<T> to store 
calculation results is also 
noteworthy. “We do this 
because List<T> is not 
thread safe, meaning that 
you need to add locking to 
your code or brace yourself 
for some unexpected results 
at runtime,” explains Wendt. 
“Developers still need to 
think about thread safety, 
but the .NET Framework 4 
makes the coding much 
easier, transforming the 
process from „be very 
careful and do the hard 
work‟ to just „be careful.‟ ”  

 

Other Useful New Features and Capabilities 
Beyond parallelization, Composite devel-opers are finding Visual Studio 2010 and the 
.NET Framework 4 useful in other new ways, such as application lifecycle manage-ment. 
“We‟re planning to upgrade our current Visual Studio Team System 2008 Team 
Foundation Server implementation to Visual Studio Team Foundation Server 2010, so we 
can take advantage of the new Scrum templates,” says Wendt. “There are a lot of great 
new features in the new Scrum templates provided with Visual Studio Team Foundation 
Server 2010, and we‟re expecting that they will be of great benefit to the development 
process.” 

 

 

 

   

 
 

 

  
 Developers still 
need to think about 
thread safety, but 
the .NET 
Framework 4 
makes the coding 
much easier, 
transforming the 
process from „be 
very careful and do 
the hard work‟ to 
just „be careful.‟ 

 

 
Marcus Wendt 
Cofounder and  



Developers also are taking advantage of the new support for 
covariance in generics. “Our system uses interfaces as the 
generic parameter when querying data from our data layer,” 
explains Wendt. “Because Visual C# 3.5 did not support 

covariance, we had to do a lot of expression tree transforma-tion when using LINQ to SQL. 
Generic covariance should give us a performance boost, make our code simpler and thus 
easier to maintain, and enable us to add „data schema inheritance‟ to our data layer to 
enable some pretty interesting new features.”  
Benefits  

By taking advantage of the new parallel-programming aids provided in Visual Studio 2010 
and the .NET Framework 4, Composite was able to easily capitalize on the performance 
gains enabled by modern multicore processors. “With Visual Studio 2010 and the .NET 
Framework 4, Microsoft is providing tools that immensely simplify parallel development,” 
says Wendt. “Devel-opers can simply „declare intent‟ to do parallelization and leave it to 
the under-lying framework to handle the rest. The process isn‟t foolproof in that developers 
still need to understand parallel program-ming, but it‟s quite easy to use and, when used 
correctly, can enable applications to utilize modern microprocessors much more 
efficiently.” 

Up to 80 Percent Reduction in Processing Time 
Composite‟s use of parallel programming is delivering significant performance gains, in 
turn improving the Composite C1 user experience for both Web developers and Web site 
end users. “On a server configured with two quad-core processors, our use of parallel 
programming delivered an 80 per-cent reduction in the time required to com-pile dynamic 
types, which means that Web developers don‟t need to wait as long when working with 
Composite C1,” says Wendt. 

The test that Composite constructed to measure the effects of parallelization on page-
rendering times showed a decrease of more than 60 percent. “Our use of parallelization 
reduced the time required to render a test Web page containing eight functions from 115 to 
40.5 milliseconds—even with one page element that takes 40 milliseconds to render on its 
own,” says Wendt. “That‟s the beauty of parallelization, in that it enables us to break up a 
chunk of work into independent tasks and execute them concurrently to get the job done 
faster.” 

Product Manager, 
Composite 

 
 

 
 



Minimal Developer Effort 
Required 
Composite was able to 
implement parallel¬ism in its 
application quickly and cost-
effectively, with very little 
developer effort. “The 
hardest part was figuring out 
where we could benefit from 
parallelization—an area 
where the Concurrency 
Visualizer in Visual Studio 
2010 was very helpful,” says 
Wendt. “Visual Studio 2010 
and the .NET Framework 4 
extend the „free lunch‟ 
enabled by increas-ing 
processor speeds over the 
past few decades with an 
„almost free lunch‟—
achieved through a set of 
tools that make it far easier 

and more practical to imple-ment parallelization. The new parallel-programming aids 
provided by Microsoft aren‟t a „magic wand‟ that will make existing code run in parallel by 
itself, but they do make the work required a whole lot easier.”   

 

Microsoft Visual Studio 2010 
Microsoft Visual Studio 2010 is an integrated development system that helps simplify the 
entire development process from design to deployment. Unleash your creativity with 
powerful prototyping, modeling, and design tools that help you bring your vision to life. 
Work within a personalized environment that helps accelerate the coding process and 
supports the use of your existing skills, and target a growing number of platforms, 
including Microsoft SharePoint Server 2010 and cloud services. Also, work more efficiently 
thanks to integrated testing and debugging tools that you can use to find and fix bugs 
quickly and easily to help ensure high-quality solutions. 

For more information about Visual Studio 2010, go to   
www.msdn.microsoft.com/vstudio  
  

Microsoft Parallel Computing Platform 
Developers today face an unprecedented opportunity to deliver new software expe-riences 
that take advantage of multicore and many-core systems. Microsoft is taking a 
comprehensive approach to simplifying parallel programming, working at all levels of the 
solution stack to make it simple for both native-code and managed-code developers to 
safely and productively build robust, scalable, and responsive parallel applications. 

 

 

 

http://www.msdn.microsoft.com/vstudio
http://www.msdn.microsoft.com/vstudio


For more information on the Microsoft Parallel Computing Platform, go to: 
http://msdn.microsoft.com/en-us/concurrency/default.aspx   

For More Information 
For more information about Microsoft products and services, call the Microsoft Sales 
Information Center at (800) 426-9400. In Canada, call the Microsoft Canada Information 
Centre at (877) 568-2495. Customers in the United States and Canada who are deaf or 
hard-of-hearing can reach Microsoft text telephone (TTY/TDD) services at (800) 892-5234. 
Outside the 50 United States and Canada, please contact your local Microsoft subsidiary. 
To access information using the World Wide Web, go to: 
www.microsoft.com  

For more information about Composite, visit the Web site at:  
www.composite.net   

 

http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://www.microsoft.com/
http://www.composite.net/
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://www.microsoft.com/
http://www.composite.net/

