

Orckestra, Europe

Nygårdsvej 16

DK-2100 Copenhagen

Phone +45 3915 7600

www.orckestra.com

Newsletter - Developer Guide

2017-02-10

Page 2 of 20 Newsletter - Developer Guide

Contents

1 INTRODUCTION .. 3

1.1 Before You Start 3

2 WRITING CUSTOM MAILING LIST MEMBER PROVIDERS 4

2.1 Default Mailing List Member Providers 4
2.2 Custom Mailing List Member Providers 5
2.2.1 Sample Code 5

2.3 Creating Class Library 6
2.3.1 Adding References 6

2.4 Creating Required Classes 6
2.4.1 Step 1: Create Mailing List Definition Class 7
2.4.2 Step 2: Create Mailing List Member Class 9
2.4.3 Step 3: Create Mailing List Provider Class 11

2.5 Building and Deploying 13
2.5.1 Automatic Deployment 13
2.5.2 Manual Deployment 13

2.6 Using Custom Mailing List 14

3 LOCALIZING NEWSLETTER .. 16

3.1 Localizing Subscribe and Unsubscribe Forms 16
3.2 Localizing Newsletter GUI 17
3.2.1 Creating Localization Files 17
3.2.2 Translating Newsletter GUI strings 17
3.2.3 Switching the CMS Console GUI Language 18

3.3 Localizing Mailing Lists, Newsletters and Templates 18
3.3.1 Localizing Mailing Lists 18
3.3.2 Localizing Newsletter Templates 18
3.3.3 Localizing Newsletters 19

4 GETTING NEWSLETTER ID ... 20

Page 3 of 20 Newsletter - Developer Guide

1 Introduction

This guide is intended for Web and C# developers and administrators who want to extend or
localize the Newsletter add-on.

The Newsletter add-on allows users to create mailing lists and create and send newsletters
directly from C1 CMS.

For information about using the Newsletter add-on, please refer to the Newsletter User
Guide.

In this guide you will learn how to create custom mailing list member providers by integrating
them with external databases.

For creating custom member providers, you should be proficient in C#/.NET programming
and know the API of a 3rd-party database application you want to integrate mailing lists with.

Besides, you will learn how to localize Newsletter’s GUI, forms and content elements. For
localization tasks, you should have a general idea of how localization works in C1 CMS and
know how to edit XML-formatted files.

1.1 Before You Start

You should make sure that you have the following prerequisites in place before you start the
guide:

 You have installed and configured the latest version of C1 CMS

 You use a test C1 CMS installation that you can experiment with.

 You have installed and configured the latest version of the Newsletter add-on on
this test C1 CMS environment.

Important: You should never use the production environment for learning purposes while
trying the examples and following the instructions in this guide.

Page 4 of 20 Newsletter - Developer Guide

2 Writing Custom Mailing List Member Providers

The mailing lists in the Newsletter add-on are filled with members by mailing list member
providers.

However, you are not limited to the sources existing within the Newsletter add-on or C1
CMS itself for member lists. You can create your own mailing list member providers to get
their member lists from external sources such as databases and database-like files.

2.1 Default Mail ing List Member Providers

The Newsletter add-on comes with two default providers:

 SubjectBasedMailingListProvider

 DataTypeBasedMailingListProvider

As it follows from their names, they handle subject-based and datatype-based mailing lists
respectively.

Two corresponding assemblies contain the code for these providers:

 Composite.Community.Newsletter.DataTypeBased.dll

 Composite.Community.Newsletter.SubjectBased.dll

These assemblies are installed in the Bin folder of the C1 CMS-based website.

The providers are plugged in via the C1 CMS configuration file
(\\<website>\Apps_Data\Composite\Composite.config) in the
<Composite.Community.Newsletter.Plugins.MailingListProviderConfiguration>
section:

<Composite.Community.Newsletter.Plugins.MailingListProviderConfiguration>

 <MailingListProviderPlugins>

 <add name="Composite.Community.Newsletter.SubjectBased"

type="Composite.Community.Newsletter.SubjectBased.StandardPlugins.MailingLi

stProvider.SubjectBasedMailingListProvider,

Composite.Community.Newsletter.SubjectBased" />

 <add name="Composite.Community.Newsletter.DataTypeBased"

type="Composite.Community.Newsletter.DataTypeBased.StandardPlugins.MailingL

istProvider.DataTypeBasedMailingListProvider,

Composite.Community.Newsletter.DataTypeBased" />

 </MailingListProviderPlugins>

</Composite.Community.Newsletter.Plugins.MailingListProviderConfiguration>

Listing 1: Default providers plugged in

Each <add> element stands for one mailing list member provider and has two mandatory
attributes:

 name

 type

The name attribute specifies the name of the mailing list member provider.

The type attribute specifies the name of the mailing list member provider class followed by
the provider’s assembly separated by a comma.

Page 5 of 20 Newsletter - Developer Guide

In the default configuration, these values are as follows:

Name: Composite.Community.Newsletter.SubjectBased

Provider:
Composite.Community.Newsletter.SubjectBased.StandardPlugins.MailingListProvider.Subje
ctBasedMailingListProvider

Assembly: Composite.Community.Newsletter.DataTypeBased

Name: Composite.Community.Newsletter.DataTypeBased

Provider:
Composite.Community.Newsletter.SubjectBased.StandardPlugins.MailingListProvider.Data
TypeBasedMailingListProvider

Assembly: Composite.Community.Newsletter.SubjectBased

The SubjectBasedMailingListProvider makes use of members manually added to the
subject-based mailing lists. They are centrally stored in the built-in global datatype
Composite.Community.Newsletter.SubjectBased.Member that comes with the
Newsletter add-on.

The DataTypeBasedMailingListProvider gets its member list from any existing global
datatype that has the Email field.

2.2 Custom Mail ing List Member Providers

Using the plug-in model of the Newsletter add-on, you can create custom mailing list
member providers and integrate them into the Newsletter add-on.

These providers get their member lists from external databases and database-like files, for
example, a CRM system, an SQL database, an Excel spreadsheet or even a plain-text file
(flat-file database).

Creating a custom provider means creating an assembly (similar to the default two), which
implements the plug-in model-related classes and interfaces and plug it into the Newsletter.

The steps to create a custom mailing list member provider include:

1. Creating a class library project and adding required references to it.

2. Creating required classes by implementing the Newsletter plug-in model.

3. Building and deploying the provider on the website.

In the following few sections, you will learn more about these steps.

2.2.1 Sample Code

For illustration, we will create a sample custom provider.

To simplify the sample code, instead of using 3rd-party application APIs to import member
lists, we will use a flat-file database stored in the MailingList.txt file in the root folder of the
target website.

The member list will only consist of one field, “Email”. Each email address will be kept in the
MailingList.txt file on a new line.

Page 6 of 20 Newsletter - Developer Guide

2.3 Creating Class Library

Each custom mailing list provider is represented by a class library assembly. So you should
start by creating a class library project by using a Class Library project template in Visual
Studio 2008 (Visual C#, Windows, Class Library).

 For our sample we will create the project called
Composite.Community.Newsletter.FileBased

2.3.1 Adding References

To be able to use C1 CMS, the Newsletter add-on and other functionality, you should add a
number of references to the project.

Normally, you should add references to the assemblies located in the Bin folder of your
website with the Newsletter add-on already installed.

The following references must be added to the project:

 Composite

 Composite.Community.Newsletter

 Composite.Generated

 Composite.Workflows

 ICSharpCode.SharpZipLib

 Microsoft.Practices.EnterpriseLibrary.Common

 Microsoft.Practices.EnterpriseLibrary.Configuration.Design

 Microsoft.Practices.EnterpriseLibrary.ExceptionHandling

 Microsoft.Practices.EnterpriseLibrary.Logging

 Microsoft.Practices.EnterpriseLibrary.Validation

 Microsoft.Practices.ObjectBuilder

 System.Configuration

 TidyNet

Once you have created a Class Library project and added all required references, go on to
create a number of classes for your mailing list member provider.

2.4 Creating Required Classes

To integrate your mailing list member provider into the Newsletter add-on, you should create
3 classes, which are implementation of two abstract classes available in
Composite.Community.Newsletter and one interface available in
Composite.Community.Newsletter.Plugins.MailingListProvider:

 Mailing List Definition Class

 Mailing List Member Class

 Mailing List Provider Class

In the following subsections, you will learn more about these abstract classes and interface
and see the sample code that implements them.

Page 7 of 20 Newsletter - Developer Guide

2.4.1 Step 1: Create Mai l ing L is t Def in i t ion Class

First, you should create a class that will represent a custom mailing list, that is, a mailing list
definition class. This class must supply the following information to the Newsletter code:

 GUID

 Title

 Description

 Flag to indicate whether members are culture-specific

 Entity token

The GUID uniquely identifies the mailing list in the Newsletter add-on.

The Title and Description are the GUI elements that the end user will identify the mailing
list by.

The flag indicates whether the members are culture-specific. If true, different mailing list
members can be available for each locale on C1 CMS. If false, the member list will be
available only for the default locale.

The Entity token is used by the C1 CMS Security model to place elements in the tree
structures such as those representing pages in the Content perspective.

You should create the mailing list definition class by inheriting it from the abstract
MailingListDefinition class (Composite.Community.Newsletter.MailingListDefinition)
and overriding its properties:

public abstract class MailingListDefinition

{

protected MailingListDefinition();

public abstract string Description { get; }

public Guid Id { get; protected set; }

public abstract EntityToken ListEntityToken { get; }

public abstract bool MembersAreCultureSpecific { get; }

public abstract string Title { get; }

}

Listing 2: Abstract MailingListDefinition class

Page 8 of 20 Newsletter - Developer Guide

In the following example, we have created the FileBasedMailingListDefinition class for
our sample mailing list member provider:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Composite.Security;

using Composite.Community.Newsletter.ElementProvider;

namespace

Composite.Community.Newsletter.FileBased.Plugins.MailingListProvider

{

 public class FileBasedMailingListDefinition : MailingListDefinition

 {

 private EntityToken _listEntityToken;

 public FileBasedMailingListDefinition(Guid id)

 {

 this.Id = id;

 this._listEntityToken = new MailingListEntityToken(id,

"FlatFile");

 }

 public override string Description

 {

 get { return "File-based mailing list"; }

 }

 public override EntityToken ListEntityToken

 {

 get { return _listEntityToken; }

 }

 public override bool MembersAreCultureSpecific

 {

 get { return false; }

 }

 public override string Title

 {

 get { return "File-based mailing list"; }

 }

 }

}

Listing 3: Sample MailingListDefinition implementation

As you can see in the example above:

1. In the constructor, we initialize the class’s ID property with the GUID passed to the

constructor.

2. We also create a new instance of the MailingListEntityToken class

(Composite.Community.Newsletter.ElementProvider.MailingListEntityToken)

and initialize the private ListEntityToken variable with it.

3. Next, we provide the title and description with hard-coded strings.

4. Then, we provide the EntityToken property we have initialized in Step 2.

5. Finally, we indicate that the members of this list are not culture-specific.

Page 9 of 20 Newsletter - Developer Guide

2.4.2 Step 2: Create Mai l ing L is t Member Class

Now you should create a class that will represent a member of the custom mailing list. Each
member can be of one or more types. Each type may include one or more fields. All these
fields will be available to the user when he or she creates a newsletter. By using types you
can combine sets of fields for a member object in your mailing list member provider.

The class you are about to create must be initialized with a string that contains an email
address and supply a member as an object to the Newsletter code.

You should create the mailing list member class by inheriting it from the abstract
MailingListMember class (Composite.Community.Newsletter.MailingListMember) and
overriding its GetMemberObject method:

public abstract class MailingListMember

{

protected string _email;

public MailingListMember(string email);

public string Email { get; }

public virtual object GetMemberObject(Type type);

}

Listing 4: Abstract MailingListMember class

Page 10 of 20 Newsletter - Developer Guide

In the following example, we have created the FileBasedMailingListMember class for our
sample mailing list member provider:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace

Composite.Community.Newsletter.FileBased.Plugins.MailingListProvider

{

 public class Member

 {

 public Member(string email)

 {

 this.Email = email;

 }

 public string Email { get; private set; }

 }

 public class FileBasedMailingListMember : MailingListMember

 {

 private Member _data = null;

 public FileBasedMailingListMember(string email) : base(email)

 {

 _data = new Member(email);

 }

 public override object GetMemberObject(Type type)

 {

 if (type == typeof(Member))

 {

 return _data;

 }

 throw new InvalidOperationException("Unknown type...");

 }

 }

}

Listing 5: Sample MailingListMember implementation

As you can see in the example above:

1. First, we create a class called “Member”, which will serve as our member object

type.

2. Then in the FileBasedMailingListMember’s constructor we create a new Member

object using the email address passed to the constructor and initialize the private

Member variable using this object.

3. In the GetMemberObject method, we return the Member object created in step 2 if

the type passed to this method is of the Member type; otherwise, we throw an

invalid operation exception indicating that the input parameter is of an unknown

type.

Page 11 of 20 Newsletter - Developer Guide

2.4.3 Step 3: Create Mai l ing L is t Provider Class

Finally, you have to create a class that represents the mailing list provider.

The class should:

 Retrieve a list of member object types available in a specific mailing list

 Retrieve a list of mailing list definitions

 Retrieve a list of members in a specific mailing list (being able to limit the number
of members to get and skip members until a specific email is found on the list)

 Build the unsubscribe link that will be inserted in newsletters

You should create a mailing list provider class by implementing the IMailingListProvider
interface
(Composite.Community.Newsletter.Plugins.MailingListProvider.IMailingListProvider):

public interface IMailingListProvider

{

string BuildUnsubscribePathAndQuery(string memberEmail, Guid

mailingListId);

IEnumerable<Type> GetAvailableMemberObjectTypes(Guid mailingListId);

IEnumerable<MailingListDefinition> GetMailingListDefinitions();

IEnumerable<MailingListMember> GetMemberChunk(Guid mailingListId,

int maxMembersToGet, string skipUntilEmail);

}

Listing 6: IMailingListProvider interface

Page 12 of 20 Newsletter - Developer Guide

In the following example, we have created the FileBasedMailingListProvider for our
sample solution:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;

using Composite.Community.Newsletter.Plugins.MailingListProvider;

using Composite.IO;

using System.IO;
namespace

Composite.Community.Newsletter.FileBased.Plugins.MailingListProvider

{

 [ConfigurationElementType(typeof(NonConfigurableMailingListProvider)

)]

 public sealed class FileBasedMailingListProvider :

IMailingListProvider

 {

 public IEnumerable<Type> GetAvailableMemberObjectTypes(Guid

mailingListId)

 {

 yield return typeof(Member);

 }

 public IEnumerable<MailingListDefinition>

GetMailingListDefinitions()

 {

 yield return new FileBasedMailingListDefinition(new

Guid("{E9A9A3CB-B338-4a5f-8D25-6C6CC2B8B9A8}"));

 }

 public IEnumerable<MailingListMember> GetMemberChunk(Guid

mailingListId, int maxMembersToGet, string skipUntilEmail)

 {

 var memberlist =

File.ReadAllLines(PathUtil.BaseDirectory + "Mailinglist.txt").Select(email

=> (MailingListMember)new FileBasedMailingListMember(email));

 if (string.IsNullOrEmpty(skipUntilEmail))

 {

 return memberlist.Take(maxMembersToGet);

 }

 return memberlist.SkipWhile(d => d.Email !=

skipUntilEmail).Skip(1).Take(maxMembersToGet);

 }

 }

}

Listing 7: Sample IMailingListProvider implementation

As you can see in the example above:

1. For the member object types we return our type Member.

2. For the mailing list definitions, we create and return our

FileBasedMailingListDefiniton object.

3. For the mailing list member objects, we read our file which serves as a flat-file

database where members listed each on a new line and return this list after

verifying a number of conditions against values passed to this method. The path to

the file and its name are hard-coded as “MailingList.txt” in the root folder of the

website.

Page 13 of 20 Newsletter - Developer Guide

Once you have finished creating all the required classes, you should proceed to build and
deploy your mailing list member provider.

2.5 Build ing and Deploying

Once you have built your solution, you are ready to deploy it and use it on the website.

To deploy the solution, you can follow one of the two approaches:

 Automatic

 Manual

For automatic deployment, you should build an add-on for your mailing list member
provider and then install it on your C1 CMS via its Packages system.

For manual deployment, you should copy the assembly you have just built to a specific
folder on your website and plug it in via the C1 CMS configuration file.

2.5.1 Automat ic Deployment

For automatic deployment, you should build an add-on for your mailing list member provider
following the standard add-on-building procedure.

In the Install.xsl file, you should specify the name of your custom provider, its class and its
assembly.

The following is the sample for the FileBasedMailingListProvider we have created:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="@* | node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()" />

 </xsl:copy>

 </xsl:template>

 <xsl:template

match="/configuration/Composite.Community.Newsletter.Plugins.MailingListPro

viderConfiguration/MailingListProviderPlugins">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()" />

 <xsl:if

test="count(add[@name='Composite.Community.Newsletter.FileBased'])=0">

 <add

name="Composite.Community.Newsletter.FileBased"

type="Composite.Community.Newsletter.FileBased.Plugins.MailingListProvider.

FileBasedMailingListProvider, Composite.Community.Newsletter.FileBased" />

 </xsl:if>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

Listing 8: Sample Install.xsl for FileBasedMailingListProvider

In the similar way, you should modify the Uninstall.xsl.

Once you have built the add-on, you can install it via the Packages system in the CMS
Console (System > Packages > Installed Packages > Local Packages > Install local
package).

2.5.2 Manual Deployment

To deploy the custom mailing list member provider manually:

Page 14 of 20 Newsletter - Developer Guide

1. Copy the mailing list member provider assembly to the Bin subfolder in the root
folder of your website.

2. Open the C1 CMS configuration file found at
\\<website>\App_Data\Composite\Composite.config

3. Locate the
<Composite.Community.Newsletter.Plugins.MailingListProviderConfiguration
> section.

4. Under the <MailingListProviderPlugins> element add the name of your provider,
its class and its assembly.

The following is the sample for the FileBasedMailingListProvider we have
created:

<add name="Composite.Community.Newsletter.FileBased"

type="Composite.Community.Newsletter.FileBased.Plugins.MailingListPr

ovider.FileBasedMailingListProvider,

Composite.Community.Newsletter.FileBased" />

Listing 9: Sample of plugging in FileBasedMailingListProvider

5. Now restart the server and then refresh the browser window (or tab) in which you
have your CMS Console running.

Now that you have deployed the custom mailing list member provider, you can start using it.

2.6 Using Custom Mailing List

Once you have deployed your custom mailing list member provider, it will appear in the
Content perspective as another mailing list.

Figure 1: Custom file-based mailing list

Page 15 of 20 Newsletter - Developer Guide

This mailing list will use the list of members retrieved from your database or database-like
file.

Since the member list is based on the external source, you cannot add or remove members
from the list as you can do with the subject-based mailing list.

For the custom mailing list, you can create and send newsletters as well as export members
if necessary.

Page 16 of 20 Newsletter - Developer Guide

3 Localizing Newsletter

The default language used in the Newsletter add-on is English. However, as other add-ons
and C1 CMS itself it can be localized.

Localization of the Newsletter add-on serves these purposes:

 Having the forms used on a website in the same language as that of the website

 Having the Newsletter GUI in the desirable language

 Having mailing lists, newsletter templates and newsletters localized

Each purpose implies its own approach, and the following few sections will cover them in
detail.

3.1 Localizing Subscribe and Unsubscribe Forms

The strings use on the Subscribe and Unsubscribe forms are stored in a resource file (.resx)
in the App_GlobalResources folder and available for English (US) out-of-the-box.

To localize the forms:

1. Make a copy of ~/App_GlobalResources/Composite/Community/Newsletter.resx in
the same folder, adding the culture code of the target language to the filename
(before the extension .resx). For example, for Danish: Newsletter.da-DK.resx

2. Edit the localization file in Visual Studio.

3. Translate the Value of each string key-value entry.

Here is the list of strings available for translation:

Key Value (in English by default)

MailingList Mailing list:

MailingLists Mailing lists:

MemberAlreadySubscribed
Please note that you were already
signed up for the following mailing
lists:

MemberEmail Email

MemberName Name

NeverMail_UnsubscribeSuccessfully Successfully unsubscribed

NeverMail_ValidateEmail
Please enter a valid email address
and try again.

SubjectBased_ConfirmMessage
A confirmation message has been
sent to your email address

SubjectBased_SelectMailingList Select a mailing list

SubjectBased_SuccessfullySubscribed Thank you for your subscription

SubjectBased_Unsubscribe_YouAreNotSubscribed You are not subscribed

SubjectBased_Unsubscribe_MemberDoesNotExists This member does not exist

SubjectBased_Unsubscribe_UnsubscribeSuccessfully Successfully unsubscribed

Page 17 of 20 Newsletter - Developer Guide

SubjectBased_ValidateEmail
Please enter a valid email address
and try again.

SubjectBased_WrongConfirmUrl Wrong confirm URL

Subscribe Subscribe

Unsubscribe Unsubscribe

UnsubscribeFromAll Unsubscribe from all

3.2 Localizing Newsletter GUI

By default, the Newsletter GUI is presented in English. To have the GUI strings in another
language, you should:

1. Create localization files for the target language.

2. Translate the related strings in the corresponding localization file.

3. Switch the regional settings in C1 CMS.

3.2.1 Creat ing Local izat ion Fi les

All the strings used in the Newsletter GUI visible in the CMS Console are stored in the
Newsletter GUI localization files.

When the Newsletter add-on is installed, its GUI localization files are placed in the folder
~\Composite\InstalledPackages\localization\ as:

 Composite.Community.Newsletter.en-us.xml

 Composite.Community.Newsletter.SubjectBased.en-us.xml

 Composite.Community.Newsletter.DataTypeBased.en-us.xml

 Composite.Community.Newsletter.FunctionBased.en-us.xml

As their names suggest, all the default Newsletter localization files contain strings in English
(“en-us”).

Copy each file replacing the culture code in its name with the proper one and place it in the
same folder. For example, if you localize Newsletter to Danish, you should create these files
by copying their English counterparts as follows:

 Composite.Community.Newsletter.da-dk.xml

 Composite.Community.Newsletter.SubjectBased.da-dk.xml

 Composite.Community.Newsletter.DataTypeBased.da-dk.xml

 Composite.Community.Newsletter.FunctionBased.da-dk.xml

3.2.2 Trans lat ing Newslet ter GUI s tr ings

Now you can edit each localization file of your target language and translate all the strings.

Each file is XML-formatted and you can edit it in any XML editor.

Its schema is standard: each string is represented with one <string> element under the
<strings> root element. Each <string> element follows the key/value pattern represented
with corresponding key and value attributes.

Page 18 of 20 Newsletter - Developer Guide

The value in the key attribute is referred internally from within the code. You cannot change
the key attribute’s value.

The value in the value attribute is what the end user can see in the GUI or on a web form.
This is the value you should edit when translating the string.

Once finished, you may need to restart the server (Tools | Restart Server).

3.2.3 Switching the CMS Console GUI Language

Please see “Switching GUI Language”.

3.3 Localizing Mailing Lists, Newsletters and Templates

Localization of mailing lists, newsletter templates and newsletters is similar to localization of
websites and web pages in C1 CMS. However, it has some differences you should be
aware of while localizing.

3.3.1 Local izing Mai l ing L ists

Only subject-based mailing lists can be localized in Newsletter. The localization procedure is
as simple as localizing a web page:

1. Switch to another language. All the subject-based mailing lists marked as “not
translated” will appear under Newsletter in the Content Perspective.

2. Right-click the mailing list you want to translate.

3. In the shortcut menu, click Translate. The mailing list will change its icon and, if it
has any newsletters in the main language, they will all appear below as “not
translated”.

4. Repeat Steps 2-3 for as many mailing lists as you need.

Important: The translated mailing list initially has no members.

It does not inherit the member list from the main language. You should add members to the
list manually.

The translated mailing list does inherit all the newsletters from the main language, though.
Before using them, you should translate them, too.

You can further edit the mailing list properties such as the name and description. They will
be specific to the current language and will not affect the properties of the mailing list in the
main language.

3.3.2 Local izing Newslet ter Templates

Unlike website templates, newsletter templates must be localized before you create
newsletters based on them.

Besides, you will be able to translate any existing newsletters based on the templates in the
main language only after you first translate the newsletter templates they are based on.

To localize a newsletter template:

1. Switch to another language. All the templates marked as “not translated” will appear
under Newsletter Templates in the Layout Perspective.

2. Right-click the template you want to localize.

http://docs.composite.net/Switching-GUI-Language

Page 19 of 20 Newsletter - Developer Guide

3. In the shortcut menu, click Localize Newsletter Template. A dialog box will appear
with the properties set by default to those in the main language.

4. Change the values where necessary and click OK. The template will change its icon
in the Layout Perspective.

5. Repeat Steps 2-4 for as many templates as you need.

3.3.3 Local izing Newslet ters

Important: You can localize the newsletter only after you have localized a newsletter
template it is based on.

To localization a newsletter:

1. Switch to another language.

2. Expand a mailing list with the newsletter you want to localize. All the newsletters
marked as “not translated” will appear under the mailing list in the Content
Perspective.

3. Right-click the newsletter you want to localize.

4. In the shortcut menu, click Localize Newsletter. The newsletter will change its icon.

5. Repeat Steps 2-4 for as many mailing lists as you need.

Now you can change the newsletter’s properties and content, which will be only specific to
this language and will not affect the properties and content of the newsletter in the main
language.

Page 20 of 20 Newsletter - Developer Guide

4 Getting Newsletter ID

You can add a link in the newsletter to publicly show this newsletter on a page on your
website. For this, you need to get the newsletter’s ID via an ad-hoc CMS function.

Please note that you can only get the ID from within the newsletter. That is why this function
must be inserted either in the newsletter itself or in the newsletter template in use.

Creating a function is up to you; however, you need to add an input parameter of a specific
type and set up its default value as described below:

1. Create an XSLT function, for example, "Demo.Newsletter.ShowOnPage".

2. Add an input parameter of the String type to the function, for example, "Newsletter".

3. In the default value of this parameter, remove the "Composite.Constant.String"
function and add the "Composite.Utils.GetInputParameter" function.

4. In its "Parameter name" parameter, type in "NewsletterId" (exactly as here).

5. On the “Template” tab, make use of this parameter's value (GUID), the way you
need.

6. Insert this function in the newsletter or newsletter template.

When the recipient receives this newsletter, it will contain its ID.

You can implement Step 5 as you need accessing the newsletter ID as
/in:inputs/in:param[@name='Newsletter'] in your XSLT.

For illustration purposes, let's assume that you have a page ~/ViewNewsletter. It expects a
query string parameter "Newsletter" with a newsletter's ID and shows the newsletter’s
content by its newsletter ID.

In the template of your function, the markup may be similar to this:

<a

href="~/ShowNewsletter?Newsletter={/in:inputs/in:param[@name='Newsletter']}

">View Online

	1 Introduction
	1.1 Before You Start

	2 Writing Custom Mailing List Member Providers
	2.1 Default Mailing List Member Providers
	2.2 Custom Mailing List Member Providers
	2.2.1 Sample Code

	2.3 Creating Class Library
	2.3.1 Adding References

	2.4 Creating Required Classes
	2.4.1 Step 1: Create Mailing List Definition Class
	2.4.2 Step 2: Create Mailing List Member Class
	2.4.3 Step 3: Create Mailing List Provider Class

	2.5 Building and Deploying
	2.5.1 Automatic Deployment
	2.5.2 Manual Deployment

	2.6 Using Custom Mailing List

	3 Localizing Newsletter
	3.1 Localizing Subscribe and Unsubscribe Forms
	3.2 Localizing Newsletter GUI
	3.2.1 Creating Localization Files
	3.2.2 Translating Newsletter GUI strings
	3.2.3 Switching the CMS Console GUI Language

	3.3 Localizing Mailing Lists, Newsletters and Templates
	3.3.1 Localizing Mailing Lists
	3.3.2 Localizing Newsletter Templates
	3.3.3 Localizing Newsletters

	4 Getting Newsletter ID

